- Cook, D. S. & Turner, M. F. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1021–1025.
- Ihn, G. S., Kim, H. S. & Koo, C. H. (1975). J. Korean Chem. Soc. 18, 329.
- Larson, A. C., Lee, F. L., Le Page, Y., Webster, M., Charland, J.-P., Gabe, E. J. & White, P. S. (1990). NRCVAX Crystal Structure System. National Research Council of Canada, Ottawa.
- O'Connell, A. M. & Maslen, E. N. (1967). Acta Cryst. 22, 134–145.
- O'Connor, B. H. & Maslen, E. N. (1965). Acta Cryst. 18, 363-366.

Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.

- Rambaud, J., Maury, L., Pauvert, B., Audran, M., Lasserre, Y., Berge, G. & Declercq, J.-P. (1985). Acta Cryst. C41, 133-134.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Sutton, L. E. (1965). Interatomic Distances and Configurations in Molecules and Ions (Supplement). London: The Chemical Society.

Acta Cryst. (1995). C51, 336-339

N-Acetylglycyl-L-alaninamide and *N*-Acetyl-L-alanyl-L-alaninamide †

Raffaella Puliti

Istituto per la Chimica di Molecole di Interesse Biologico CNR, Via Toiano 6, 80072 Arco-Felice, Napoli, Italy

CARLO ANDREA MATTIA

Dipartimento di Chimica dell'Università 'Federico II' di Napoli, Via Mezzocannone 4, 80134 Napoli, Italy

(Received 30 May 1994; accepted 19 July 1994)

Abstract

The main conformations of *N*-acetylglycyl-L-alaninamide (NAGAA), $C_7H_{13}N_3O_3$, and *N*-acetyl-L-alanyl-L-alaninamide (NAA₂A), $C_8H_{15}N_3O_3$, occur in the *F* and *E* regions, respectively, of the φ , ψ map, according to the classification of Zimmerman, Pottle, Némethy & Scheraga [*Macromolecules* (1977), **10**, 1–9]. In both structures, the packing is governed by intermolecular hydrogen bonds which involve all the donor groups. In the NAGAA crystal, each molecule shares eight hydrogen bonds with eight nearest molecules, thus forming a three-dimensional network of hydrogen bonds. The methyl groups lie at van der Waals distances in channels which grow parallel to *b* and around the screw axis.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved In NAA₂A, screw-related molecules are joined by three hydrogen bonds and form ribbons which extend parallel to the *bc* plane, alternately at x = 0 and 0.5. A fourth hydrogen bond connects the ribbons along the direction of the *a* axis.

Comment

N-Acetyl peptidoamides are useful model compounds for the investigation of peptide interactions and the preferred conformations in polypeptide chains. As part of our continuing studies concerning crystallographic determinations (Puliti, Mattia & Lilley, 1993, and references therein), as well as some thermodynamic parameters connected with phase transitions, whose trends have been discussed on the basis of crystallographic results (Barone, Giancola, Lilley, Mattia & Puliti, 1992), we present here the crystal structures of *N*-acetylglycyl-L-alaninamide (NAGAA) and *N*-acetyl-L-alanyl-L-alaninamide (NAA₂A).

Perspective views of the NAGAA and NAA₂A molecules are shown in Figs. 1(a) and 1(b), respectively. For each molecule, the peptide linkage between the residues displays close to the ideal *trans* form.

In NAGAA, the φ_1 and ψ_1 torsion angles are rather similar to those of φ_2 and ψ_2 (see Table 2) and fall in the *F* region of the Zimmerman map (Zimmerman, Pottle, Némethy & Scheraga, 1977). Although this region does

Fig. 1. Perspective views of the molecules with the atomic labelling schemes for non-H atoms: (a) NAGAA and (b) NAA₂A. Displacement ellipsoids are shown at the 30% probability level.

[†] The authors dedicate this paper to the memory of Professor George Némethy, who spent some periods of his activities in Naples during recent years.

not include an energy minimum for the glycine, many Gly residues in peptide structures occur in the $F(F^*)$ region. In particular, Gly conformations such as that in the NAGAA molecule have been observed recently in both independent molecules in the structure of *N*-acetyl-L-prolylglycinamide (Puliti, Mattia & Lilley, 1993).

The NAA₂A molecule is in an almost extended conformation and the alanine methyls protrude in opposite directions with respect to the best plane of the peptide skeleton. Both Ala residues fall in the E region and φ and ψ torsion angles are close to the values found for antiparallel pleated sheets: β -poly-L-alanine (Arnott, Dover & Elliott, 1967), di-L-alanine hydrochloride (Tokuma, Ashida & Kakudo, 1969) and tri-L-alanine (Fawcett, Camerman & Camerman, 1975). The conformations of several small peptide crystals are revealed in the E or Fregions (Puliti, Mattia, Barone & Giancola, 1989, 1991; Puliti, Mattia, Barone, Della Gatta & Ferro, 1990; Puliti, Mattia & Lilley, 1992, 1993). In these regions, the potential-energy surfaces are largely isoenergetic (Vasquez, Némethy & Scheraga, 1983, and references therein) and very shallow energy barriers separate the local minima.

For the NAA₂A molecule we have evaluated the conformational energy map, using the molecular geometry derived from the crystallographic study and a procedure (interaction-energy contributions and minimizing method) analogous to that employed in ECEPP (empirical conformational energy program for peptides) and updated versions (Némethy, Pottle & Scheraga, 1983). It appears that the conformation observed in the NAA₂A crystal [$\varphi_1 = -151.4(2), \psi_1 = 142.0(2); \varphi_2$ $= -141.5(2), \psi_2 = 148.1(2)^{\circ}$ corresponds to a relative minimum, which is only 4.6 kJ mol⁻¹ higher in energy than the absolute minimum that occurs within the C region at $\varphi = -80$, $\psi = 76^{\circ}$. The small difference in energies is a consequence of the flatness of the energy surfaces in these regions, and thus, small changes (energetically the most favourable) in intermolecular interactions in the crystals are sufficient to cause new local minima.

The packing of NAA₂A (Fig. 2) is ruled by four intermolecular hydrogen bonds. Screw-related molecules are linked together by three hydrogen bonds, giving rise to ribbons which extend parallel to the *bc* plane, alternately at x = 0 and 0.5. The fourth hydrogen bond, N3—H3…O3, connects the ribbons along a direction that forms a stair framework. The alanine methyl groups settle in apolar regions at distances greater than 4 Å. The acetyl methyl groups of molecules belonging to different ribbons face each other at van der Waals distance.

In the crystal of NAGAA, efficient molecular packing (Fig. 3) is stabilized by a three-dimensional network of hydrogen bonds. Each molecule shares eight hydrogen bonds with eight different molecules (Table 3). The methyl groups lie, at distances greater than 3.8 Å, in the apolar channel around the screw axis at x = 0, z = 0.5.

In both structures there are some C_{α} —H···O short intermolecular interactions (3.27–3.51Å), but the Hatom geometry is well beyond accepted values for an attractive interaction involving activated C—H groups (Taylor & Kennard, 1982).

Fig. 2. Crystal packing of NAA₂A projected along the *a*-axis direction. For clarity, only O and N atoms are labelled. Dashed lines indicate hydrogen bonds; the symmetry relations of the acceptors are reported in Table 6.

Fig. 3. Crystal packing of NAGAA projected on the *ac* plane. For clarity, only O and N atoms are labelled. Dashed lines indicate hydrogen bonds: the symmetry relations of the acceptors are reported in Table 3.

Experimental

The syntheses of NAGAA and NAA₂A were described previously by Milburn (1984) and Lilley (1988). Crystals of NAGAA were obtained by slow evaporation from ethyl ether; those of NAA₂A by slow evaporation from ethanol–ethyl ether solution.

C₇H₁₃N₃O₃ AND C₈H₁₅N₃O₃

Flattened prism $0.45 \times 0.18 \times 0.06$ mm

Colourless

 $\theta_{\rm max} = 76^{\circ}$

 $k = 0 \rightarrow 6$

 $h = 0 \rightarrow 10$

 $l = -14 \rightarrow 14$

4 standard reflections

frequency: 240 min

intensity decay: 2%

NAGAA

Crystal data
C7H13N3O3
$M_r = 187.20$
Monoclinic
P21
<i>a</i> = 8.189 (3) Å
$b = 5.047 (1) \text{ Å}_{1}$
c = 11.305 (5) Å
$\beta = 96.12 (2)^{\circ}$
$V = 464.6 (5) \text{ Å}^3$
Z = 2
$D_x = 1.338 \text{ Mg m}^{-3}$

Data collection

Enraf-Nonius CAD-4F diffractometer ω -2 θ scans Absorption correction: none 1090 measured reflections 1090 independent reflections 1065 observed reflections $[I \geq 2.5\sigma(I)]$

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.03$
R = 0.030	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.033	$\Delta \rho_{\min} = -0.16 \text{ e} \text{ Å}^{-3}$
S = 0.91	Extinction correction:
1065 reflections	Stout & Jensen (1968)
157 parameters	Extinction coefficient:
Only coordinates of H atoms	8.4 (6) \times 10 ⁻⁶
refined	Atomic scattering factors
$w = 1/[\sigma^2(F_o) + (0.01F_o)^2]$	from International Tables
+ 1] (Killean &	for X-ray Crystallography
Lawrence, 1969)	(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for NAGAA

$B_{\rm eq} = (1/3) \sum_i \sum_j B_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$				
	x	у	Z	B_{eq}
01	0.3673 (2)	0.5000	0.1356 (1)	3.14 (3
02	0.3386 (2)	0.2696 (3)	0.4089 (1)	3.87 (3
03	0.1341 (2)	0.5044 (5)	-0.1293 (1)	4.36 (3
N1	0.3253 (2)	0.2026 (4)	-0.0737 (1)	2.67 (3
N2	0.1345 (2)	0.3366 (4)	0.1948 (1)	2.38 (3
N3	0.3450 (2)	0.7113 (4)	0.4322 (2)	3.10 (3
Cl	0.2417 (2)	0.1273 (4)	0.0274 (2)	2.60 (4
C2	0.2535 (2)	0.3410 (4)	0.1225 (2)	2.26 (3
C3	0.1328 (2)	0.5251 (4)	0.2911 (2)	2.33 (3
C4	0.2842 (2)	0.4910 (5)	0.3814 (2)	2.42 (3
C5	0.2633 (2)	0.3959 (5)	-0.1458(2)	2.80 (4
C6	0.3601 (3)	0.4697 (6)	-0.2465 (2)	3.92 (5
C7	-0.0208 (3)	0.4800 (7)	0.3529 (2)	3.83 (5

Table 2. Geometric parameters (Å, °) for NAGAA

01C2	1.226 (2)	N2—C3	1.448 (3)
02C4	1.230 (3)	N3—C4	1.324 (3)
03C5	1.223 (3)	C1—C2	1.518 (3)
N1C1	1.444 (2)	C3—C4	1.529 (2)
N1C5	1.336 (3)	C3—C7	1.520 (3)
N1C5	1.336 (3)	C3C7	1.520 (3)
N2C2	1.337 (2)	C5C6	1.502 (3)

Cu $K\alpha$ radiation $\lambda = 1.5418$ Å Cell parameters from 24	C1N1C5 C2N2C3 N1C1C2 O1C2N2 O1C2C1 N2C2C1 N2C3C4	119.6 (2) 121.0 (2) 111.9 (2) 122.0 (2) 122.7 (2) 115.2 (2) 110.9 (2)	$\begin{array}{c} C4-C3-C7\\ 02-C4-N3\\ 02-C4-C3\\ N3-C4-C3\\ 03-C5-C6\\ N1-C5-C6\\ N1-C5-C6\\ \end{array}$	109.2 (2) 122.9 (2) 121.1 (2) 115.8 (2) 120.8 (2) 122.7 (2) 116.5 (2)
reflections	N2—C3—C7	108.8 (2)		
$\theta = 22-25^{\circ}$ $\mu = 0.850 \text{ mm}^{-1}$ T = 293 K Elettened prism	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-69.8 (2) 177.9 (2) 178.5 (2) -62.8 (2)	$\begin{array}{c} C2 - N2 - C3 - C7 \\ N1 - C1 - C2 - N2 \psi_1 \\ N2 - C3 - C4 - N3 \psi_2 \end{array}$	177.1 (2) 156.0 (2) 145.1 (2)

Table 3. Hydrogen-bonding geometry (Å, °) for NAGAA

D—H···A	$\mathbf{H} \cdots \mathbf{A}$	$D \cdot \cdot \cdot A$	D—H···A	
N1-H1···O1	1.92 (3)	2.872 (2)	167 (2)	
N2—H2···O3 ⁱⁱ	1.89 (3)	2.802 (2)	169 (3)	
N3—H3···O2 ⁱⁱⁱ	2.04 (3)	2.830 (2)	145 (2)	
N3—H4···O2 ^{iv}	2.09 (2)	3.006 (2)	170 (3)	
Symmetry codes: (i) $1 - x, y - \frac{1}{2}, -z$; (ii) $-x, y - \frac{1}{2}, -z$; (iii) $x, 1 + y, z$;				

 $(iv) 1 - x, \frac{1}{2}, -z; (ii) - x, y - \frac{1}{2}, (iv) 1 - x, \frac{1}{2} + y, 1 - z.$

NAA₂A Crystal data

	$C_8H_{15}N_3O_3$	Cu $K\alpha$ radiation
	$M_r = 201.23$	$\lambda = 1.5418 \text{ Å}$
$\Delta/\sigma)_{\rm max} = 0.03$	Orthorhombic	Cell parameters from 24
$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$	P212121	reflections
$\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$	a = 5.5005 (4) Å	$\theta = 21 - 26^{\circ}$
xtinction correction:	<i>b</i> = 9.429 (1) Å	$\mu = 0.767 \text{ mm}^{-1}$
Stout & Jensen (1968)	c = 20.712 (2) Å	T = 293 K
xtinction coefficient:	V = 1074.2 (3) Å ³	Flattened prism
8.4 (6) \times 10 ⁻⁶	Z = 4	$0.66 \times 0.20 \times 0.04$ mm
tomic scattering factors	$D_x = 1.244 \text{ Mg m}^{-3}$	Colourless
From International Tables	-	

Data collection

Enraf–Nonius CAD-4F	θ
diffractometer	h
ω –2 θ scans	k
Absorption correction:	l
none	3
1314 measured reflections	
1314 independent reflections	
1237 observed reflections	
$[l > 2.5\sigma(l)]$	

Refinement

Refinement on F
R = 0.036
wR = 0.040
S = 0.97
1237 reflections
173 parameters
Only coordinates of H atoms
refined
$w = 1/[\sigma^2(F_o) + (0.01F_o)^2]$
+ 1] (Killean &
Lawrence, 1969)

$\theta_{\rm max} = 75^{\circ}$
$h = 0 \rightarrow 6$
$k = 0 \rightarrow 11$
$l = 0 \rightarrow 25$
3 standard reflections
frequency: 240 min
intensity decay: 1%

 $(\Delta/\sigma)_{\rm max} = 0.10$ $\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: Stout & Jensen (1968) Extinction coefficient: $2.1(1) \times 10^{-6}$ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 4. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for NAA₂A

$$B_{\text{eq}} = (1/3) \sum_i \sum_j B_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Ζ	B_{eq}
01	0.4686 (6)	0.2114 (2)	0.23695 (7)	6.33 (6)
O2	0.3700 (4)	0.5564 (1)	0.40379 (7)	3.92 (4)
O3	0.4403 (4)	0.5603 (2)	0.06558 (7)	4.07 (4)
N1	0.4670 (4)	0.3581 (2)	0.12206 (8)	2.92 (4)
N2	0.4746 (4)	0.4166 (2)	0.29028 (8)	3.06 (4)
N3	0.3755 (5)	0.3494 (2)	0.45757 (8)	3.67 (4)
C1	0.3495 (5)	0.4183 (2)	0.17867 (9)	3.31 (5)
C2	0.4387 (5)	0.3402 (2)	0.23807 (9)	3.23 (5)
C3	0.5508 (5)	0.3555 (2)	0.35116 (9)	3.01 (4)
C4	0.4222 (4)	0.4292 (2)	0.40623 (9)	2.83 (4)
C5	0.5083 (5)	0.4343 (2)	0.06933 (9)	3.01 (4)
C6	0.6416 (6)	0.3672 (3)	0.0148 (1)	4.36 (6)
C7	0.8238 (6)	0.3645 (4)	0.3601 (1)	5.60 (7)
C8	0.0751 (6)	0.4110 (4)	0.1739 (1)	6.39 (8)

Table 5. Geometric parameters (Å, °) for NAA₂A

01C2 02C4 03C5 N1C1 N1C5 N2C2 N2C3	1.226 (3) 1.235 (3) 1.248 (3) 1.454 (3) 1.327 (3) 1.315 (3) 1.448 (3)	N3C4 C1C2 C1C8 C3C4 C3C7 C5C6	1.327 (3) 1.515 (3) 1.514 (4) 1.511 (3) 1.516 (4) 1.488 (3)
C1-N1-C5 C2-N2-C3 N1-C1-C2 N1-C1-C8 C2-C1-C8 O1-C2-N2 O1-C2-C1 N2-C2-C1 N2-C2-C1 N2-C3-C4	121.9 (2) 122.8 (2) 108.7 (2) 111.9 (2) 110.7 (2) 122.6 (2) 120.6 (2) 116.8 (2) 109.8 (2)	$\begin{array}{c} N2 - C3 - C7 \\ C4 - C3 - C7 \\ 02 - C4 - N3 \\ 02 - C4 - C3 \\ N3 - C4 - C3 \\ 03 - C5 - N1 \\ 03 - C5 - C6 \\ N1 - C5 - C6 \end{array}$	111.8 (2) 110.2 (2) 122.6 (2) 121.6 (2) 115.8 (2) 121.0 (2) 120.3 (2) 118.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 151.4 (2) 176.7 (2) 177.6 (2) - 141.5 (2)	$\begin{array}{c} C2-N2-C3-C7 \\ N1-C1-C2-N2 \psi_1 \\ N2-C3-C4-N3 \psi_2 \\ C5-N1-C1-C8 \end{array}$	95.8 (3) 142.0 (2) 148.1 (2) 85.9 (3)

Table 6. Hydrogen-bonding geometry (Å, °) for NAA₂A

D—H···A	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdots A$	D — $\mathbf{H} \cdots \mathbf{A}$
N1-H1···O2 ⁱ	2.19 (3)	3.030 (2)	160 (2)
$N2 - H2 \cdot \cdot \cdot O1^{ii}$	2.00 (3)	2.853 (2)	161 (3)
N3—H3···O3 ⁱⁱⁱ	2.02 (3)	2.957 (3)	174 (3)
N3—H4· · · O3'	2.07 (3)	2.948 (2)	165 (2)
Symmetry codes: (i)	$1 - x, y - \frac{1}{2}, \frac{1}{2}$	- z; (ii) 1 -	$x, \frac{1}{2} + y, \frac{1}{2} - z;$
	(iii) $\frac{1}{2} - x$, $1 - x$	$y, \frac{1}{2} + z.$	

The structures were solved by means of the *MULTAN11/82* package (Main *et al.*, 1982). All calculations were performed using *SDP* software (Enraf–Nonius, 1985) on a MicroVAX 3100 computer.

The authors wish to thank Professor T. H. Lilley for the NAGAA and NAA₂A samples.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: AS1117). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Arnott, A., Dover, D. & Elliott, A. (1967). J. Mol. Biol. 30, 201–208.Barone, G., Giancola, C., Lilley, T. H., Mattia, C. A. & Puliti, R. (1992). J. Therm. Anal. 38, 2771–2778.
- Enraf-Nonius (1985). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- Fawcett, J. K., Camerman, N. & Camerman, A. (1975). Acta Cryst. B31, 658-665.
- Killean, R. C. G. & Lawrence, J. L. (1969). Acta Cryst. B25, 1750-1752.
- Lilley, T. H. (1988). Biochemical Thermodynamics, edited by M. N. Jones, pp. 1-52. Amsterdam: Elsevier.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Milburn, P. J. (1984). PhD thesis, Univ. of Sheffield, England.
- Némethy, G., Pottle, M. S. & Scheraga, H. A. (1983). J. Phys. Chem. 87, 1883–1887.
- Puliti, R., Mattia, C. A., Barone, G., Della Gatta, G. & Ferro, D. (1990). *Thermochim. Acta*, 162, 229–240.
- Puliti, R., Mattia, C. A., Barone, G. & Giancola, C. (1989). Acta Cryst. C45, 1554–1557.
- Puliti, R., Mattia, C. A., Barone, G. & Giancola, C. (1991). Acta Cryst. C47, 1658-1662.
- Puliti, R., Mattia, C. A. & Lilley, T. H. (1992). Acta Cryst. C48, 709-712.
- Puliti, R., Mattia, C. A. & Lilley, T. H. (1993). Acta Cryst. C49, 2173-2176.
- Stout, G. H. & Jensen, L. H. (1968). X-ray Structure Determination, pp. 409-412. New York: Macmillan.
- Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
- Tokuma, Y., Ashida, T. & Kakudo, M. (1969). Acta Cryst. B25, 1367-1373.
- Vasquez, M., Némethy, G. & Scheraga, H. A. (1983). *Macromolecules*, 16, 1043–1049.
- Zimmerman, S. S., Pottle, M. S., Némethy, G. & Scheraga, H. A. (1977). Macromolecules, 10, 1–9.